back to top
26.7 C
Athens
Κυριακή 1 Ιουνίου 2025

Πώς η Στατιστική Μηχανική Μάθηση και η AI μετασχηματίζουν τον τρόπο λειτουργίας της αγοράς

του Σωτήρη Μπερσίμη*

Η ασφαλιστική βιομηχανία αποτελεί έναν από τους πρώτους κλάδους επιχειρηματικής δραστηριότητας που αξιοποίησαν εκτενώς δεδομένα σε συνδυασμό με τη Στατιστική και τα Μαθηματικά, προκειμένου να επιτύχουν τη λήψη βέλτιστων αποφάσεων.

- Advertisement -

Οι πίνακες θνησιμότητας, για παράδειγμα, εφαρμόζονται στην τιμολόγηση των ασφαλίσεων ζωής από την ίδια την αρχή της ασφάλισης, ενώ η βάση των παραδοσιακών πρακτικών της ασφαλιστικής βιομηχανίας είναι η χρήση γενικευμένων γραμμικών μοντέλων για την επιλογή στρατηγικών.

Σήμερα, ο όγκος των δεδομένων που έχουν στη διάθεσή τους οι ασφαλιστικές επιχειρήσεις αυξάνεται με ιλιγγιώδεις ρυθμούς, εξαιτίας κυρίως του ψηφιακού μετασχηματισμού, ο οποίος παρουσίασε, ιδιαίτερα κατά την περίοδο του Covid-19, σημαντικό ρυθμό επιτάχυνσης. Ο όγκος των δεδομένων που έχουν στη διάθεσή τους οι ασφαλιστικές επιχειρήσεις, τόσο από εσωτερικά πληροφοριακά συστήματα όσο και από εξωτερικά κανάλια, οδήγησε στην ευρεία ανάπτυξη «δεξαμενών» Μεγάλων Δεδομένων (Big Data), η αξιοποίηση των οποίων διευρύνει τις δυνατότητες βελτιστοποίησης της καθημερινής ασφαλιστικής πρακτικής.

- Advertisement -

Διανύουμε, δηλαδή, μια εποχή όπου οι αποφάσεις και οι επιλογές μπορούν να βασίζονται σε εργαλεία που αναδύονται μέσα από τη χρήση πρωτοποριακών τεχνικών με ασύλληπτες δυνατότητες ανάλυσης και συσχέτισης εκατομμυρίων μεταβλητών και χαρακτηριστικών σε πραγματικό χρόνο. Συγκεκριμένα, η χρήση προηγμένων Τεχνικών Ανάλυσης Δεδομένων (Advanced Data Analytics) και Στατιστικής Μηχανικής Μάθησης (Statistical Machine Learning ), η οποία και βρίσκεται στην καρδιά της Τεχνητής Νοημοσύνης (Artificial Intelligence), επεκτείνεται πέρα από τα όρια της Αναλογιστικής Επιστήμης.

Η ανάληψη στρατηγικών αποφάσεων καταρχάς με την αξιοποίηση δομημένων (βάσεων δεδομένων πελατών, βάσεων δεδομένων απαιτήσεων κτλ.) αλλά και, δευτερευόντως, αδόμητων πηγών δεδομένων (τιμολογίων, μηνυμάτων ηλεκτρονικού ταχυδρομείου, συμβολαίων κτλ.), προερχόμενων από παραδοσιακές ή μη πηγές, σε πραγματικό χρόνο, αποτελεί μεγάλη πρόκληση για κάθε ασφαλιστική επιχείρηση, διότι προσδίδει τεράστιο συγκριτικό πλεονέκτημα και συμβάλλει στην ανάπτυξη ενός ανταγωνιστικού και καινοτόμου εταιρικού μοντέλου.

Η λήψη αποφάσεων μέσω της αξιοποίησης των δεδομένων με τη χρήση προηγμένων Τεχνικών Ανάλυσης Δεδομένων και Τεχνικών Στατιστικής Μηχανικής Μάθησης αναφέρεται ως Λήψη Αποφάσεων Βασισμένη σε Δεδομένα (Data-Driven Decision Making), ενώ παράλληλα η σε πραγματικό χρόνο ανάλυση των δεδομένων καθοδηγεί και ανατροφοδοτεί τον Ψηφιακό Μετασχηματισμό του κλάδου (Data-Driven Digital Transformation).

Πιο αναλυτικά, με τη βοήθεια προηγμένων Τεχνικών Ανάλυσης Δεδομένων και Τεχνικών Στατιστικής Μηχανικής Μάθησης, τα Μεγάλα Δεδομένα είναι δυνατόν να αναλύονται αποτελεσματικά σε πραγματικό χρόνο, παράγοντας προβλέψεις, και οι παραγόμενες προβλέψεις να εφαρμόζονται δυναμικά σε ένα ευρύ φάσμα διαδικασιών της ασφαλιστικής επιχείρησης, περιλαμβανομένων και διαδικασιών στις οποίες παραδοσιακά επιλέγονταν η ανθρώπινη εμπειρία και κρίση.

Μεταξύ των διαδικασιών με τις οποίες η εφαρμογή προηγμένων Τεχνικών Ανάλυσης Δεδομένων και Τεχνικών Στατιστικής Μηχανικής Μάθησης δύναται να δώσει στην ασφαλιστική επιχείρηση στρατηγικό πλεονέκτημα είναι η διαχείριση κινδύνων, η διαχείριση των απαιτήσεων, η ανίχνευση απατηλών απαιτήσεων, οι πωλήσεις μέσω της βελτιστοποίησης των διαδικασιών απόκτησης νέων και διατήρησης των υφιστάμενων πελατών, η τιμολόγηση ασφαλιστικών προϊόντων, ο σχεδιασμός ασφαλιστικών προϊόντων κ.ά.

Φυσικά, για την αξιοποίηση των Μεγάλων Δεδομένων απαιτείται εξειδικευμένη τεχνογνωσία στη διαχείριση, στην επεξεργασία και στην αποτελεσματική ανάλυση των δεδομένων, καθώς και κατάλληλο λογισμικό. Παράλληλα, απαιτείται βαθιά γνώση των λειτουργιών, των ιδιαιτεροτήτων και των απαιτήσεων του ασφαλιστικού κλάδου.

Μία από τις σημαντικότερες λειτουργίες στην οποία η αξιοποίηση των Μεγάλων Δεδομένων οδηγεί σε εξαιρετικά αποτελέσματα είναι αυτή της διαχείρισης και του ελέγχου των απαιτήσεων για την ανίχνευση πιθανών απατηλών απαιτήσεων στην ασφάλιση αυτοκινήτου.

Η εφαρμογή προηγμένων Τεχνικών Ανάλυσης Δεδομένων και Τεχνικών Στατιστικής Μηχανικής Μάθησης επιτρέπει στις ασφαλιστικές εταιρείες να αναλύσουν αποτελεσματικά τον διαθέσιμο μεγάλο όγκο δομημένων και αδόμητων δεδομένων, όπως πληροφορίες από αιτήσεις ασφάλισης, απαιτήσεις αποζημιώσεων, αναφορές ατυχημάτων κ.ά.
Συγκεκριμένα, η εφαρμογή προηγμένων Τεχνικών Ανάλυσης Δεδομένων και Τεχνικών Στατιστικής Μηχανικής Μάθησης στις διαθέσιμες δεξαμενές Μεγάλων Δεδομένων (ύψος απαιτήσεων, περιοχή, τύπος/μάρκα αυτοκινήτων κ.ά.) επιτρέπει αφενός τον ορισμό του «κανονικού» και αφετέρου οδηγεί στον άμεσο εντοπισμό περιπτώσεων που ξεφεύγουν από το «κανονικό», ανιχνεύοντας στις αιτήσεις αποζημίωσης ασυνήθιστα μοτίβα που ενδεχομένως να υποδεικνύουν απάτη.

Με αυτόν τον τρόπο, κάθε νέα απαίτηση δύναται να κατηγοριοποιηθεί ανάλογα με την πιθανότητα αυτής να είναι απάτη, ανάλογα με την απόκλισή της από το «κανονικό». Η ανάλυση αυτή γίνεται μέσα σε ελάχιστο χρόνο και έχει εξαιρετικά μεγαλύτερη ακρίβεια σε σύγκριση με παραδοσιακές μεθόδους.

Επιπλέον, μετριάζει την ανάγκη για έλεγχο από άνθρωπο, μειώνοντας έτσι σημαντικά το κόστος για την ασφαλιστική εταιρεία και τον χρόνο που απαιτείται. Ακριβέστερα, δίνει τη δυνατότητα στον άνθρωπο να επικεντρώσει τον έλεγχό του στις απαιτήσεις εκείνες που ξεφεύγουν από το «κανονικό», προωθώντας άμεσα προς επίλυση εκείνες τις απαιτήσεις που συνάδουν με το «κανονικό». Παράλληλα, αυξάνει την ικανοποίηση του ασφαλισμένου, καθώς μπορεί να οδηγήσει σε ταχύτερη επίλυση των «κανονικών» απαιτήσεων.

Επιπροσθέτως, οι δυνατότητες ανάλυσης επεκτείνονται στην αξιοποίηση μη δομημένων δεδομένων, όπως οι φωτογραφίες από τον χώρο του ατυχήματος. Οι αλγόριθμοι Στατιστικής Μηχανικής Μάθησης μπορούν να εκπαιδευτούν να αναγνωρίζουν ανωμαλίες ή πρότυπα σε φωτογραφίες ατυχημάτων που μπορεί να υποδεικνύουν απάτη, όπως σημεία που δεν ταιριάζουν με τις αναφερόμενες ζημίες, αλλοίωση του χώρου του ατυχήματος, παρουσία ατυχούς οχήματος σε πολλά ατυχήματα, ανακρίβεια στη δήλωση σε σχέση με τον καιρό, τον χώρο, την ώρα κτλ. Τέτοιες ανωμαλίες ή πρότυπα είναι πολύ δύσκολο, έως απίθανο, να αναγνωριστούν από το ανθρώπινο μάτι.

Αναμφίβολα, τα προαναφερθέντα, με αντίστοιχο τρόπο, βρίσκουν εφαρμογή στη διαχείριση και τον έλεγχο των απαιτήσεων από το σύνολο των κλάδων ασφάλισης, όπως είναι η ασφάλιση περιουσίας και η ασφάλιση υγείας.

*Ο Σωτήρης Μπερσίμης είναι καθηγητής στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων του Πανεπιστημίου Πειραιώς, εκλεγμένο μέλος του Διοικητικού Συμβουλίου του Ελληνικού Στατιστικού Ινστιτούτου και εκλεγμένο μέλος του International Statistical Institute. Εκπροσωπεί το Ελληνικό Στατιστικό Ινστιτούτο στο Federation of European National Statistical Societies (FenStats) καθώς και στο European Courses in Advanced Statistics (ECAS). Παράλληλα, ανήκει στο συνεργαζόμενο εκπαιδευτικό προσωπικό του Ελληνικού Ανοικτού Πανεπιστημίου (ΕΑΠ). Επίσης, είναι μέλος της επιτροπής κρίσεων του διαγωνισμού “i-bank Καινοτομία και Τεχνολογία” της Εθνικής Τράπεζας της Ελλάδος.

Από το περιοδικό BROKER’S TIME #76

brokerstime.gr

sema.gr

Σχετικές δημοσιεύσεις

Κωστής Ι. Αλφιέρης: Αναλαμβάνει τα ηνία με όραμα το άνοιγμα του ΣΕΜΑ σε νέα μέλη

Ένας έμπειρος μεσίτης, ο κ. Κωστής Αλφιέρης, αναλαμβάνει τα ηνία του Συνδέσμου Ελλήνων Μεσιτών Ασφαλίσεων (ΣΕΜΑ)

ΣΕΜΑ: Διαμαρτυρία για την αλλαγή στον τρόπο καταβολής αποζημίωσης για τα ασφαλιστήρια Legacy χαρτοφυλακίου

Την διαμαρτυρία του εκφράζει ο ΣΕΜΑ για την αλλαγή στον τρόπο καταβολής αποζημίωσης για τα ασφαλιστήρια Legacy χαρτοφυλακίου

Κ. Αλφιέρης:  Οι δύο κύριοι στόχοι του ΣΕΜΑ, τι συζητείται με MGA και Coverholders

Δύο κύριους στόχους θέτει για τον ΣΕΜΑ ο νεοεκλεγείς πρόεδρος του Συνδέσμου, πρόεδρος και διευθύνων σύμβουλος της Athens Insurance Brokers Κωστής Ι. Αλφιέρης, σύμφωνα με τα όσα δήλωσε σήμερα στο IW.gr

Φιλίππα Μιχάλη, NN Hellas: Oι Έλληνες συνεχίζουν να είναι υπασφαλισμένοι

Tο έμπειρο στέλεχος της ασφαλιστικής αγοράς κα. Φιλίππα Μιχάλη στο Brokers Time...

Από την ίδια κατηγορία δημοσιεύσεων

Κοινό μέτωπο σχηματίζουν διαμεσολαβητές και εταιρείες για τα νοσήλια

Παρ' όλο που διανύουμε ήδη το α` εξάμηνο του 2025, η αναστάτωση στην αγορά καλά κρατεί γύρω από τις αυξήσεις στα ασφάλιστρα Υγείας

Πάνος Δημητρίου/Generali: Σήμερα έχουμε πάρτι, είμαστε μπροστά από τον ανταγωνισμό

H Generali  αποφασίζει δυναμικά, τώρα ‘να κάνει ένα limit up,  αλλάζοντας όλα στο customer care, είπε ο Πάνος Δημητρίου.

6ο Συνέδριο Επαγγελματικής Ασφάλισης: Όσα δήλωσαν on camera κορυφαίοι προσκεκλημένοι

Με μεγάλη επιτυχία διοργανώθηκε και φέτος το 6ο Συνέδριο Επαγγελματικής Ασφάλισης...

Όλα όσα ακούσαμε και είδαμε στο φετινό, επετειακό Insurance & Reinsurance Meeting

Για 25η χρονιά πραγματοποιήθηκε η καθιερωμένη Συνάντηση Ασφαλιστών και Αντασφαλιστών που διοργανώνει η Ένωση Ασφαλιστικών Εταιριών Ελλάδος

Δημοφιλή Άρθρα

Sorry. No data so far.

Ροή Ειδήσεων

Αυξημένες κατά 16 εκατ. ευρώ οι καταθέσεις των ασφαλιστικών επιχειρήσεων

Μείωση κατά 1.145 εκατ. ευρώ παρουσίασαν, τον Απρίλιο του 2025, οι καταθέσεις των επιχειρήσεων, έναντι αύξησης κατά 2.563 εκατ. ευρώ

Η Anytime εγκαινίασε το ανακαινισμένο Δημοτικό Σχολείο στο Μεγάλο Μοναστήρι

Η Anytime, σε συνεργασία με τη Humanity Greece, την Πέμπτη 29 Μαΐου 2025, παρέδωσαν στην τοπική κοινωνία της Θεσσαλίας το ανακαινισμένο Δημοτικό Σχολείο στο Μεγάλο Μοναστήρι

Κοινό μέτωπο σχηματίζουν διαμεσολαβητές και εταιρείες για τα νοσήλια

Παρ' όλο που διανύουμε ήδη το α` εξάμηνο του 2025, η αναστάτωση στην αγορά καλά κρατεί γύρω από τις αυξήσεις στα ασφάλιστρα Υγείας

Allianz – Plus2Feet συνεχίζουν να δίνουν κίνηση και ελπίδα στα ζώα που το χρειάζονται

Η Allianz συνεχίζει τη συνεργασία της με την εταιρεία Plus2Feet, στο πλαίσιο της κοινής δράσης «Walking Together», που ξεκίνησε το 2021 μ

Καταλυτικός στη διαχείριση ρίσκου είναι ο ρόλος του broker

Η τρέχουσα οικονομική συγκυρία χαρακτηρίζεται από πληθωριστικές πιέσεις, γεωπολιτικές εντάσεις και διακυμάνσεις στις αγορές